Ketikabeban 1 kΩ dihubungkan ke rangkaian dioda, beban ini akan mengambil arus 2,1mA. Akibatnya akan ada penurunan tegangan pada dioda sebanyak: ΔvO = -2,1 x r = -2,1 x 18,9 = -39,7 mV Penurunan pada setiap dioda kira-kira 13,2 mV, pemakaian model sinyal kecil tidak sepenuhnya 'valid'.
Perbandingan overshoot dan settling time respon kecepatan motor PMDC pada jangka watu 0-25 detik tidak diberi gangguan beban dapat dilihat pada tabel . Tabel Perbandingan overshoot dan settling time respon kecepatan motor PMDC saat 0-25 ref =120 rad/sec Metode Kontrol PI PI PSO Overshoot rad/s 0 0 Settling time det 8,581 3,534 Dapat dilihat pada tabel bahwa sistem dengan kontroler PI pada jangka waktu 0-25 detik memiliki nilai settling time sebesar 8,581 detik dan tidak memiliki nilai overshoot, sedangkan sistem dengan kontroler PI yang dioptimisasi dengan menggunakan PSO memiliki nilai settling time sebesar 3,534 detik dan juga tidak memiliki nilai overshoot. Oleh karena itu dapat disimpulkan bahwa pada periode 0-25 detik pada saat sistem tidak diberi gangguan beban respon sistem dengan kontroler PI yang dioptimisasi dengan PSO lebih baik dibandingkan respon sistem dengan kontroler PI konvensional karena respon sistem kembali ke kondisi steady state lebih cepat. Respon Kecepatan Saat Sistem diberi Gangguan Beban TL = 1 Nm, ref = 120 rad/sec Pada jangka waktu 25-50 detik terdapat gangguan berupa torsi mekanik sebesar 1 Nm. Ketika motor diberi gangguan berupa beban, maka kecepatannya akan turun. Dari respon sistem sebelumnya dapat dilihat bahwa tegangan motor akan naik agar motor mencapai kecepatan referensinya kembali. Selain itu, pada saat kecepatan motor turun karena motor dibebani maka torsi dan arus motor akan naik agar torsi elektrik pada motor mampu melawan torsi mekanik yang diberikan beban sehingga dengan kondisi yang demikian motor dapat mencapai kecepatan referensinya kembali. Perbandingan overshoot dan settling time respon kecepatan motor PMDC pada jangka watu 25-50 detik diberi gangguan beban dapat dilihat pada tabel Tabel Perbandingan overshoot dan settling time respon kecepatan motor PMDC saat 25-50 detik TL = 1 Nm, ref =120 rad/sec Metode Kontrol PI PI PSO Overshoot rad/s 118,8 118,9 Settling time det 27,46 25,61 Dapat dilihat pada tabel bahwa sistem dengan kontroler PI pada jangka waktu 25-50 detik memiliki nilai overshoot sebesar 118,8 rad/sec dan memiliki nilai settling time sebesar 27,46 detik, sedangkan sistem dengan kontroler PI yang dioptimisasi dengan menggunakan PSO memiliki nilai overshoot sebesar 118,9 rad/sec dan memiliki nilai settling time sebesar 25,61 detik. Dari tabel tersebut dapat diketahui bahwa pada saat sistem diberi gangguan beban, sistem dengan kontroler PI konvensional mengalami perlambatan kecepatan menjadi 118,8 rad/sec sedangkan sistem dengan kontroler PI yang dioptimisasi dengan menggunakan PSO mengalami perlambatan kecepatan menjadi 118,9 rad/sec. Itu artinya respon kecepatan motor PMDC yang dikontrol oleh kontroler PI konvensional lebih lambat dibandingkan dengan respon kecepatan motor PMDC yang dikontrol oleh kontroler PI yang dioptimisasi dengan PSO ketika motor tersebut diberi beban. Oleh karena itu dapat disimpulkan bahwa pada periode 25-50 detik pada saat sistem diberi gangguan beban respon sistem dengan kontroler PI yang dioptimisasi dengan PSO lebih baik dibandingkan respon sistem dengan kontroler PI konvensional karena respon sistem kembali ke kondisi steady state lebih cepat dan perlambatan sistem ketika diberi beban lebih kecil. Respon Kecepatan Saat Sistem diberi Gangguan Beban TL = 2 Nm, ref = 120 rad/sec Respon kecepatan sistem motor PMDC dengan gangguan torsi mekanik 2 Nm ditunjukkan pada gambar Gambar Respon Kecepatan Motor PMDC dengan Gangguan Torsi Mekanik 2 Nm ref = 120 rad/sec Pada jangka waktu 25-50 detik terdapat gangguan berupa torsi mekanik sebesar 2 Nm. Ketika motor diberi gangguan berupa beban, maka kecepatannya akan turun. Dari respon sistem sebelumnya dapat dilihat bahwa tegangan motor akan naik agar motor mencapai kecepatan referensinya kembali. Selain itu, pada saat kecepatan motor turun karena motor dibebani maka torsi dan arus motor akan naik agar torsi elektrik pada motor mampu melawan torsi mekanik yang diberikan beban sehingga dengan kondisi yang demikian motor dapat mencapai kecepatan referensinya kembali. Oleh karena itu tegangan input pada motor harus dinaikkan agar kecepatan motor dapat kembali ke kecepatan yang diinginkan karena salah satu cara dalam pengaturan kecepatan motor PMDC adalah dengan mengontrol tegangan inputnya Perbandingan overshoot dan settling time respon kecepatan motor PMDC pada jangka watu 25-50 detik diberi gangguan beban dapat dilihat pada tabel Tabel Perbandingan overshoot dan settling time respon kecepatan motor PMDC saat 25-50 detik TL = 2 Nm, ref =120 rad/sec Metode Kontrol PI PI PSO Overshoot rad/s 117,6 117,7 Settling time det 28,05 25,62 Dapat dilihat pada tabel bahwa sistem dengan kontroler PI pada jangka waktu 25-50 detik memiliki nilai overshoot sebesar 117,6 rad/sec dan memiliki nilai settling time sebesar 28,05 detik, sedangkan sistem dengan kontroler PI yang dioptimisasi dengan menggunakan PSO memiliki nilai overshoot sebesar 117,7 rad/sec dan memiliki nilai settling time sebesar 25,62 detik. Dari tabel tersebut dapat diketahui bahwa pada saat sistem diberi gangguan beban, sistem dengan kontroler PI konvensional mengalami perlambatan kecepatan menjadi 117,6 rad/sec sedangkan sistem dengan kontroler PI yang dioptimisasi dengan menggunakan PSO mengalami perlambatan kecepatan menjadi 117,7 rad/sec. Itu artinya respon kecepatan motor PMDC yang dikontrol oleh kontroler PI konvensional lebih lambat dibandingkan dengan respon kecepatan motor PMDC yang dikontrol oleh kontroler PI yang dioptimisasi dengan PSO ketika motor tersebut diberi beban. Oleh karena itu dapat disimpulkan bahwa pada periode 25-50 detik pada saat sistem diberi gangguan beban respon sistem dengan kontroler PI yang dioptimisasi dengan PSO lebih baik dibandingkan respon sistem dengan kontroler PI konvensional karena respon sistem kembali ke kondisi steady state lebih cepat dan perlambatan sistem ketika diberi beban lebih kecil. Dari hasil simulasi pada keempat respon sistem diatas dapat dilihat bahwa sistem yang menggunakan kontroler PI yang doptimisasi dengan PSO memiliki respon yang paling baik. Hal ini menunjukkan bahwa dengan menggunakan PSO didapatkan koordinasi parameter PI yang optimal sehingga mampu meredam osilasi sistem yang lebih baik dibandingkan kontroler yang lain. BAB 5 PENUTUP Kesimpulan Dari hasil simulasi diperoleh beberapa kesimpulan yaitu sebagai berikut 1. Metode PSO dapat digunakan untuk menentukan koordinasi parameter PI yang optimal. 2. Kontroler PI yang optimal dapat diterapkan pada sistem motor PMDC untuk meredam osilasi respon sistem motor PMDC. 3. Penerapan PSO terhadap PI pada sistem motor PMDC dapat memperkecil overshoot respon sistem dan mempercepat settling time sistem. 4. Perubahan respon sistem akan terjadi ketika motor diberi gangguan beban. Saran Saran untuk penelitian berikutnya adalah 1. Untuk mendapatkan koordinasi parameter PI yang optimal pada sistem motor PMDC dapat dilakukan dengan menggunakan komputasi cerdas yang lain untuk mendapatkan hasil yang lebih optimal.
Bebannaik yaitu pada saat putaran diberi hambatan mekanik dan b eban turun yaitu pada saat hambatan mekanik dilepas. Tabel 4.4 Pengujian steady state time berbeb an dengan kecepatan referensi 25 00 Rpm No. Kecepatan (Rpm) Frekuensi (Hz) Tegangan (V) Arus ( A ) Steady state time (s) V in V o Iin Io Beban naik Beban Turun 1.
Dalam penggunaan sebenarnya, tegangan keluaran dalam generator belitan dc berbanding terbalik dengan arus beban yang bervariasi . Tegangan keluaran menurun dengan meningkatnya arus beban karena penurunan tegangan pada resistansi jangkar meningkat E = IR. Dalam generator lilitan seri, tegangan keluaran bervariasi secara langsung dengan arus beban . Mengenai hal ini, mengapa tegangan berkurang ketika beban meningkat? Ketika beban meningkat, lebih banyak arus mengalir melalui resistansi internal menyebabkan penurunan tegangan yang lebih tinggi di sepanjang resistansi internal. Sumber tegangan menunjukkan tegangan idealnya dikurangi penurunan tegangan pada resistansi internal. Selain itu, mengapa arus meningkat ketika beban meningkat? Pada motor listrik, hampir semua jenis arus berbanding lurus dengan torsi. Jika beban bertambah , dengan kata lain torsi bertambah dan arus bertambah . Medan magnet pada motor berhubungan dengan tegangan. Juga Tahu, bagaimana beban mempengaruhi tegangan? Beban mempengaruhi kinerja sirkuit sehubungan dengan tegangan atau arus keluaran, seperti pada sensor, sumber tegangan , dan amplifier. Jika impedansi beban tidak jauh lebih tinggi dari impedansi catu daya, tegangan akan turun. Apa yang terjadi pada tegangan terminal sel jika beban meningkat? Tanpa beban , ia berjalan dengan kecepatan penuh tegangan rangkaian terbuka dan saat Anda memuatnya , tegangan terminal menurun seiring dengan meningkatnya arus yang diambil . Akhirnya, dengan baterai korslet, arus yang diambil maksimum tetapi tegangan terminal nol. Hambatan internal sel menyebabkan hal ini terjadi .
Saatoperasional dikasi beban itu kondisi mesin nyala khan ya? Yg jadi masalah tegangan ngga stabil saat beban full ya? Kl digas tegangan naik ya itu pasti sepertinya. Hanya saja tegangan skrg kl beban full bervariasi antara 12,9 - 13 VDC ya? Masalahnya Om merasa tegangan tidak stabil saat diberi beban penuh khan?
– Pengertian Dan Cara Mengatasi Voltage Drop Pada Jaringan AC. Permasalahan drop tegangan pada jaringan listrik telah menimbulkan banyak permasalahan, terutama untuk wilayah yang memiliki beban penggunaan yang melebihi kapasitas hanya beroperasional pada voltase tertentu dengan toleransi voltase tertentu. Namun, karena suatu sebab, listrik yang mengalir ke end user mengalami voltage drop hingga di bawah toleransi voltase kerja peralatan, sehingga berpotensi merusak peralatan. Untuk itu, masalah tersebut harus dapat diatasi dengan mengetahui factor Dan Cara Mengatasi Voltage Drop Pada Jaringan ACPengertian Voltage DropYang dimaksud dengan voltage drop adalah besarnya penurunan voltase terukur akhir dibandingkan dengan voltase yang direncanakan. Terdapat banyak sekali penyebab voltage drop, bagian berikut ini akan menjelaskan secara umum beberapa Voltage DropSetiap kabel pasti memiliki hambatan dalam, sehingga saat arus mengalir melalui konduktor tersebut, maka sepanjang kabel akan terjadi perubahan voltase. Semakin panjang sebuah kabel, maka voltage drop atau tegangan jatuh akan semakin besar. Terdapat 3 hal utama yang menyebabkan terjadinya voltage drop yaitu Besarnya arus yang mengalir. Semakin besar arus yang mengalir, maka akan semakin besar voltage drop yang terjjadi. Impedansi atau tahanan dalam kabel. Semakin besar tahanan dalam sebuah kabel, maka akan semakin besar pula voltage drop yang akan terjadi. Hal ini berbanding terbalik dengan diameter kawat yang dilalui. Semakin besar diameter kawat, maka tahanan dalam akan semakin kecil. Demikian juga dengan panjang kabel, semakin panjang kabel, maka akan semakin besar tahanan dalam kabel, sehingga akan semakin besar voltage drop yang terjadi. Beban yang melebihi kapasitas supply. Pada kondisi tersebut, tidak hanya peralatan yang mungkin mengalami kerusakan, tetapi seluruh jaringan dalam keadaan Tahanan Dalam Atau Impedansi KawatImpedansi sebuah kabel atau kawat sangat tergantung pada beberapa hal seperti yang telah di sebutkan di atas yaitu besarnya diameter, panjang kabel, bahan atau komposisi kabel atau kawat, serta suhu kawatnya. Besarnya tahanan dalam dinyatakan dalam Ohm/ Perhitungan Voltage DropDalam aliran arus listrik AC, perhitungan dapat menggunakan asumsi factor beban pada kondisi arus arus maksimal sebuah jaringan. Nilai tersebut dapat diukur dengan mempertimbangkan factor efisiensi. Untuk sistem tiga phasa Vr = √3 x ρ x L x I x Cos phi A • Vr = Drop Voltage • Ρ = Tahanan jenis • L = Panjang kawat penghantar • I = Besar Arus • Cos phi = Faktor daya • A = Luas PenampangContoh Perhitungan Voltage Drop Instalasi Listrik 3 FasaSuatu Pembangkit listrik dengan tegangan sebesar 440 Volt, Cos phi 0,80, dialirkan menggunakan Kabel tembaga dengan luas penampang 95mm² sepanjang 500 meter untuk menyuplai berbagai peralatan listrik dengan beban arus sebesar 200 Ampere. Berapa besar kerugian tegangan Tegangan Drop pada ujung kabel tersebut adalah Vr = Drop Voltage ρ = Tahanan jenis Kabel bahan Tembaga 0,0000000172 l = Panjang kawat penghantar 500 Meter I =200 Ampere Cos phi = 0,80 A = 95 mm² atau 0,000095 m² Vr = √3 x ρ x L x I x Cos phi/A Vr = 1,732 x 0,0000000172 mm²/m x 500m x 200Amp x 0,80 0,000095 m²= 0,002383232 0,000095 m² Vr = 25,08 VoltMaka dapat disimpulkan bahwa tegangan di ujung kawat adalah V0-Vr – 440 – 25,8 Volt V = voltCara Mengatasi Masalah Voltage Drop Mengganti ukuran kawat atau penghantar dengan diameter atau penampang yang lebih besar. Hal ini ternyata sangat signifikan. Menggunakan trafo step up pada gardu atau pada panel end user atau pemakai sebelum listrik disalurkan. Dengan demikian, maka voltase listrik dapat dikoreksi terlebih dahulu sebelum disalurkan ke user. Pemilihan konduktor dengan tahanan dalam yang kecil, voltase drop lebih Dan Cara Mengatasi Voltage Drop Pada Jaringan ACIngat selalu bahwa semakin jauh sebuah titik dari gardu utama, maka voltase akan semakin
Alatini diberi tegangan dengan batas tegangan input sebesar 200 - 225 V dan diukur hasil outputnya. Kemudian alat diberi beban lampu sebesar 40 W - 150 W dan diukur arus yang mengalir pada beban. Apabila saklar Off ditekan maka alat penstabil tegangan tidak bekerja. Keyword : Fasa, kontrol , penstabil, tegangan, thyristor 1.
Penggunaan Generator saat ini sudah menjadi kebutuhan pokok terutama pada rumah sakit, perkantoran maupun industri. Perawatan yang kurang baik sering kali menjadi penyebab terjadinya gangguan atau tidak bekerjanya generator secara maksimal. Beberapa penyebab masalah yang timbul pada saat generator sebelum diberi beban dan sesudah diberi beban MASALAH GENERATOR SEBELUM DIBERI BEBAN PENYEBAB Tegangan tidak keluar Kabel PMG stator terputus atau terhubung singkat PMG stator terhubung singkat/rusak Magnet residu pada generator tidak ada Voltmeter atau selector tidak bekerja/rusak Kerusakan pada kabel-kabel control generator Proteksi AVR generator bekerja over current protection Varistor rusak Dioda penyearah pada exciter rusak Gulungan exciter putus atau terhubung singkat AVR rusak Tegangan Kurang Engine speed/RPM kurang Setelan tegangan kurang Hand trimmer potensio rusak AVR rusak Tegangan terlalu tinggi Engine speed/RPM terlalu tinggi Setelan tegangan terlalu tinggi Sensing AVR terputus AVR rusak Tegangan tidak stabil RPM mesin tidak stabil Pemasangan PMG tidak tepat miring Kabel putus/kendor Ada kebocoran isolasi gulungan dengan frame/ground AVR rusak Tegangan tidak seimbang antar phase Kerusakan pada gulungan stator MASALAH GENSET SETELAH DIBERI BEBAN PENYEBAB Tegangan stator tidak seimbang Pembagian beban/arus yang tidak seimbang Tegangan tidak stabil RPM mesin tidak stabil Power factor mendahului leading atau kontroler kapasitor bank tidak bekerja dengan baik Adanya beban yang menyebabkan adanya harmonisa Setelan stability tidak tepat Fluktuasi beban yang selalu berubah-rubah dengan cepat AVR rusak Respon beban kejut kurang cepat Respon governor lambat Beban kejut yang terlalu tinggi lebih dari 25% Setelan avibility AVR kurang tepat Kerusakan pada AVR Kerusakan pada diode penyearah Tegangan turun Proteksi AVR bekerja karena exciter overload Beban terlalu tinggi overload Power factor terlalu rendah RPM mesin drop terlalu banyak Kerusakan pada AVR Tegangan terlalu tinggi Beban tidak seimbang Power factor mendahului leading Pemasangan CT drop kit terbalik Gangguan dari beban yang menimbulkan harmonisa AVR rusak
2Cara kedua bisa menggunakan battray load tester untuk menguji kemampuan aki saat memutar mesin, battray load tester akan membebani aki dengan arus listrik kira-kira 110 Amper dan akan terbaca drop tegangan aki saat mendapat beban 110 Amper tersebut.
ArticlePDF Available AbstractGenerator salah satu bagian dari sistem tenaga listrik yang digunakan untuk mengkon-versi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL di samping putaran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus digunakan untuk meningkatkan tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk membina arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubah-ubah. Oleh pembangkit listrik tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besaran beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat mengatasi pembantuan katup udara dan arus eksitasi yang di-injeksikan pada generator rotor pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pembebanan yang diterapkan. Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Hasil yang diperoleh adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus arus naik, agar adanya kes-esuaian arus Discover the world's research25+ million members160+ million publication billion citationsJoin for freeContent may be subject to copyright. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 398 1. PENDAHULUAN PLTA Mini Hydro Curug mempunyai 2 unit generator yang masing – masing mempunyai kapasi-tas 3400 kW. Generator merupakan salah satu bagian dari sistem tenaga listrik yang digunakan un-tuk mengkonversi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL selain pu-taran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus penguatan digunakan untuk mengatur besarnya tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk mengatur arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubahubah. Oleh karenanya sua-tu pembangkit tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besarnya beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat diatasi dengan mengatur bukaan katup air dan arus eksitasi yang diinjeksikan pada rotor gen-erator pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pem-bebanan yang diterapkan. Dengan pentingnya fungsi sistem eksitasi pada suatu pembangkit tenaga listrik, maka dibuatlah penelitian ini, adapun tujuan penelitian kali ini adalah untuk menganalisa fungsi eksitasi pada pembangkit tenaga listrik, mengetahui rangkaian sistem penguat generator PLTA Mini Hydro Curug selain itu untuk mengetahui pengaruh pembebanan terhadap tegangan output pada generator di PLTA Mini Hydro Curug. PENGARUH PEMBEBANAN TERHADAP ARUS EKSITASI GENERATOR UNIT 2 PLTMH CURUG Miftah Farhan1, Rahmat Hidayat2, Yuliarman Saragih3 1,2,3Program Studi Teknik Elektro, Universitas Singaperbangsa Karawang 1miftahfarhan1006 2 3Yuliarman ABSTRACT The generator is one part of the electric power system that is used to convert mechanical energy from the turbine rotation into electrical energy by utilizing the force of electric motion. In the process of generating electromotive force apart from the rotation of the turbine, an amplifying current excitation is needed which functions to produce a magnetic field in the field coil in the generator rotor. The gain current is used to adjust the amount of output voltage according to the applied loading. The tool used to regulate the excitation current is the Automatic Voltage Regulator AVR. The loading that is differ-entiated at the generator varies from time to time. Therefore, a power plant must be able to generate electric power in accordance with the varying load size. In electric power generation, this loading fluc-tuation can be overcome by adjusting the water valve opening and the excitation current that is inject-ed into the generator rotor at a constant rotor rotation by the AVR so that electrical power is generat-ed according to the applied loading. The purpose of this study is to analyze the effect of load on the existing excitation current. The results obtained are that the load has an effect on the existential cur-rent, so injection is needed to increase the current when the current rises, so that there is a current compatibility. ABSTRAK Generator merupakan salah satu bagian dari sistem tenaga listrik yang digunakan untuk mengkon-versi energi mekanik yang berasal dari putaran turbin menjadi energi listrik dengan memanfaatkan gaya gerak listrik. Dalam proses pembangkitan gaya gerak listrik GGL selain putaran dari turbin, diperlukan arus penguat eksitasi yang berfungsi untuk menghasilkan medan magnet pada kumparan medan di rotor generator. Arus penguatan digunakan untuk mengatur besarnya tegangan keluaran sesuai pembebanan yang diterapkan. Adapun alat yang digunakan untuk mengatur arus eksitasi adalah Automatic Voltage Regulator AVR. Pembebanan yang dibedakan pada pembangkit setiap waktunya berubah-ubah. Oleh karenanya suatu pembangkit tenaga listrik harus mampu membangkitkan daya listrik sesuai dengan besarnya beban yang berubah-ubah tersebut. Pada pembangkitan tenaga listrik, fluktuasi pembebanan ini dapat diatasi dengan mengatur bukaan katup air dan arus eksitasi yang di-injeksikan pada rotor generator pada putaran rotor yang konstan oleh AVR sehingga dihasilkan daya listrik sesuai pembebanan yang diterapkan. Tujuan penelitian ini adalah untuk menganlisa pengaruh beban terhadap arus eksitasi yang ada. Adapun hasil yang didapatkan adalah beban berpengaruh ter-hadap arus eksistasi, maka dibutuhkan injeksi agar menambah arus saat arus naik, agar adanya kes-esuaian arus Kata Kunci beban listrik; eksitasi; generator; pembangkit listrik JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 399 2. TINJAUAN PUSTAKA Prinsip Kerja PLTA Mini Hidro Pembangkit Listrik Tenaga Air PLTA merupakan pembangkit tenaga listrik yang mengu-bah energi potensial air menjadi energi listrik. Dengan memanfaatkan mesin penggerak turbin air yang terlebih dulu mengkonversi energi potensial air menjadi energi mekanik untuk kemudian dikonversikan lagi menjadi energi listrik dengan memutar rotor generator. Perbedaan PLTA untuk mini hidro daya keluarannya berkisar antara 100 sampai 10000 W, jadi Pembangkit listrik diatas W masuk kategori PLTA. Daya listrik yang dibangkitkan dapat dihitung menggunakan pendekatan rumus P = g . H . Q . Nt . Ng kW ……………………1 Dimana P = Daya yang dihasilkan turbin kW g = Percepatan gravitasi bumi kg m/s2 H = Tinggi jatuh air m Q = Debit air m3/s Nt = Efesiensi turbin % Ng = Efesiensi generator % Proses pembangkitan energi listrik pada PLTA Mini Hydro Curug terdiri dari beberapa tahapan yaitu 1 Aliran sungai dengan jumlah debit air sedimikian besar ditampung dalam betuk bangunan ben-dungan 2 Air tersebut dialirkan melalui saringan power intake 3 Kemudian masuk ke dalam pipa pesat penstock 4 Untuk mengubah energi potensial menjadi energi kinetik. Pada ujung pipa dipasang katup uta-ma Main Inlet Valve 5 Air disalurkan ke rumah siput spiral case. Air yang telah mempunyai tekanan dan kecepatan tinggi energi kinetik dirubah menjadi energi mekanik dengan dialirkan melalui sirip–sirip pengarah sudu tetap akan mendorong sudu jalan/runner yang terpasang pada turbin 6 Pada turbin , gaya jatuh air yang mendorong baling–baling menyebabkan turbin berputar . Tur-bin air kebanyakan seperti kincir angin, dengan menggantikan fungsi dorong angin untuk memutar baling–baling digantikan air untuk memutar turbin. Selanjutnya turbin merubah en-ergi kinetik yang disebabkan gaya jatuh air menjadi energi mekanik 7 Generator dihubungkan dengan turbin melalui gigi–gigi putar sehingga ketika baling–baling turbin berputar maka generator ikut berputar. Generator selanjutnya merubah energi mekanik dari turbin menjadi energi listrik 8 Air keluar melalui tail race. 9 Tenaga listrik yang dihasilkan oleh generator masih rendah, maka dari itu tegangan tersebut terlebih dahulu dinaikan dengan trafo utama 10 Untuk efisiensi penyaluran energi dari pembangkit ke pusat beban , tegangan tinggi tersebut kemudian diatur dan dibagi di switch yard. selanjutnya disalurkan /interkoneksi ke sistem tena-ga listrik melalui kawat saluran tegangan tinggi. Generator Sinkron Definisi Generator Sinkron Generator sinkron merupakan salah satu jenis generator listrik dimana terjadi proses pengkonversian energi dari energi mekanik ke energi listrik yang dihasilkan oleh putaran kumparan rotor yang memotong suatu medan elektromagnetik yang dihasilkan di stator sehingga kemudian menyebabkan timbulnya energi listrik. Dikatakan generator sinkron karena jumlah putaran rotornya sama dengan jumlah putaran medan magnet pada stator. Kecepatan sinkron ini dihasilkan dari kecepatan putar rotor dengan ku-tub-kutub magnet yang berputar dengan kecepatan yang sama dengan medan putar pada stator. Kumparan medan pada generator sinkron terletak pada rotornya sedangkan kumparan jangkarnya terletak pada stator. Induksi elektromagnetik yang terjadi dalam generator merupakan bentuk aplikasi nyata dari Hukum Faraday yang menyatakan “Jika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul tegangan induksi”. Kontruksi Generator Sinkron Secara umum generator sinkron terdiri atas stator, rotor, dan celah udara. Stator merupakan bagian dari generator sinkron yang diam sedangkan rotor adalah bagian yang berputar dimana diletakkan kumparan medan yang disuplai oleh arus searah dari Eksiter. Celah udara adalah ruang antara stator dan rotor. Celah udara adalah ruang antara stator dan rotor. 1 Rotor Rotor merupakan bagian berputar yang berfungsi untuk membangkitkan medan magnet yang menghasilkan tegangan dan akan di induksikan ke stator. Pada rotor terdapat kutub-kutub magnet dengan lilitannya yang dialiri arus searah, melewati cincin geser dan si-kat. Generator sinkron memiliki dua tipe rotor, yaitu a Rotor yang berbentuk kutub sepatu salient pole b Rotor yang berbentuk kutub dengan celah udara sama rata cylindrical 2 Stator Stator adalah bagian generator yang diam dan berfungsi sebagai tempat untuk menerima induksi magnet dari rotor. Arus bolak-balik AC yang menuju ke beban disalurkan melalui armatur, komponen ini berbentuk sebuah rangka silinder dengan lilitan kawat konduktor yang sangat banyak. Armatur selalu diam tidak bergerak. Oleh karena itu, komponen ini juga disebut dengan stator. Lilitan armatur generator dalam wye dan titik netral dihub-ungkan ke tanah. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 400 Prinsip Kerja Generator Sinkron Ketika kumparan medan yang terdapat pada rotor dihubungkan dengan sumber eksitasi tertentu yang akan mensuplai arus searah terhadap kumparan medan. Dengan adan-ya arus searah yang mengalir melalui kumparan medan maka akan menimbulkan fluksi yang besarnya terhadap waktu adalah tetap. Penggerak awal Prime Mover yang sudah terkopel dengan rotor segera dioperasikan sehingga memutar rotor pada kecepatan nominalnya. Perputaran rotor tersebut sekaligus akan memutar medan magnet yang dihasilkan oleh kumparan medan. Medan putar yang dihasilkan pada rotor, akan diinduksikan pada kumparan jangkar sehingga pada kumparan jangkar yang terletak di stator akan dihasilkan fluks magnetik yang berubah-ubah besarnya terhadap waktu. Untuk generator sinkron tiga phasa, digunakan tiga kumparan jangkar yang ditem-patkan di stator yang disusun dalam bentuk tertentu, sehingga susunan kumparan jangkar yang sedemikian akan membangkitkan tegangan induksi pada ketiga kumparan jangkar yang besarnya sama tapi berbeda fasa 1200 satu sama lain. Setelah itu ketiga terminal kumparan jangkar siap dioperasikan untuk menghasilkan energi listrik. Sistem Eksitasi Eksitasi pada generator sinkron adalah proses penguatan medan magnet dangan cara memberikan arus searah pada belitan medan yang terdapat pada rotor. Sesuai dengan prinsip el-ektromagnet yaitu apabila suatu konduktor berupa kumparan dialiri listrik arus searah maka kumparan tersebut akan menjadi magnet shingga akan menghasilkan fluks-fluks magnet. Apabi-la kumparan medan yang telah diberi arus eksitasi diputar dengan kecepatan tertentu, maka kumparan medan yang telah diberi arus eksitasi diputar dengan kecepatan tertentu, maka kumparan jangkar yang terdapat pada stator akan terinduksi oleh fluks-fluks magnet yang dihasilkan oleh kumparan medan sehingga dihasilkan tegangan listrik bolak-balik. Besarnya te-gangan yang dihasilkan tergantung kepada besarnya arus eksitasi dan putaran yang diberikan pa-da rotor, semakin besar arus eksitasi dan putaran, maka akan semakin besar tegangan yang akan dihasilkan oleh sebuah generator. Berdasarkan cara penyaluran arus searah pada rotor generator sinkron, sistem eksitasi terdiri dari dua jenis yaitu sistem eksitasi dengan menggunakan sikat brush excitation yang terdiri dari sistem eksitasi konvensional dan eksitasi statis dan sistem eksitasi tanpa menggunakan sikat brushless ecxitation yaitu menggunakan sistem permanen magnet generator. 3. METODOLOGI Penelitian ini diperlukan metode yang dipergunakan untuk melakukan penelitian agar mampu menjawab masalah yang sedang diteliti. Suatu penelitian biasanya dimulai dengan suatu perencanaan yang seksama dengan mengikuti rangkaian deretan petunjuk yang disusun secara logis dan sistematis, sehingga hasilnya dapat mewakili kondisi sebenarnya dan dapat dipertanggung jawabkan . Agar menghasilkan hasil penelitian yang baik dan memenuhi tujuan penelitian, maka proses penelitian akan dirumuskan sesuai dengan judul penelitian dan mencakup langkah-langkah yang dilakukan dalam penelitian tersebut. Berikut langkah-langkah penelitian yang dijelaskan penulis melalui proses penelitian yaitu Sumber Miftah Farhan, 2020 Gambar 1. Alur Penelitian 1 Identifikasi Masalah Identifikasi Masalah merupakan langkah awal yang dilakukan dalam penelitian ini. Pada tahap mengidentifikasi masalah dimaksudkan agar dapat memahami masalah yang akan diteliti, sehingga dalam tahap analisis dan perancangan tidak keluar dari permasalahan yang diteliti. 2 Studi Literatur Pada tahap penelitian sastra, penulis mempelajari dan memahami teori-teori yang diperoleh dari berbagai buku, jurnal dan internet sebagai pedoman dan referensi untuk melengkapi kosakata konsep dan teori, sehingga memberikan landasan yang baik dan dasar ilmiah untuk pemecahan masalah. Artikel ini Mendiskusikan dan mempelajari penelitian yang berhubungan dengan pertanyaan penelitian. 3 Pengumpulan Data Sebagai bahan pendukung yang sangat berguna bagi penulis untuk mencari atau mengumpulkan data yang diperlukan dalam penelitian ini, penulis menggunakan beberapa cara, yaitu a. Dokumen Kerja hard document b. Pengamatan observation c. Wawancara Interview Untuk menyelesaikan masalah pengaruh pembebanan terhadap arus eksitasi generator unit 2 PLTMH curug maka dilakukan langkah-langkah sebagai berikut a. Mengumpulkan data teknis dilapangan yaitu data beban dan data suplai daya. b. Menganalisa kapasitas suplai daya. c. Mengelompokkan jenis pembebanan JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 401 d. Melakukan perencanaan analisa pada eksitasi daya dengan pengaturan injeksi pada beban Penelitian ini dilaksanakan di PLTA Mini Hydro Curug unit 2. Dengan jenis penelitian Survey Research penelitian survei, dimana tidak dilakukan perubahan atau tidak ada perlakuan khusus terhadap variabel yang diteliti. Pengambilan data dilakukan selama 03 Februari 2020 4. HASIL DAN PEMBAHASAN Sistem Eksitasi PLTMH Curug Sistem eksitasi merupakan sistem penguatan generator yang menginjeksikan arus searah pa-da generator. Sistem eksitasi di PLTMH Curug menggunakasn sitem eksitasi tanpa sikat brash-less. Sistem pengoperasian Unit PLTMH Curug dapat dilakukan dengan cara manual, program, dan remote. Adapun pengoperasian secara manual ialah proses pelaksanaannya dilakukan di pow-er house dengan sistem step by step dari panel komando. Lalu ada pengoperasian dengan program yaitu proses pelaksanaannya di power house dengan sistem otomatis dari panel komando. Se-dangkan pengoperasian dengan remote ialah proses pelaksanaannya dengan cara otomatis yang dikendalikan di ruang kontrol building. Adapun Sistem eksitasi memiliki fungsi – fungsi antara lain 1 Mempertahankan tegangan ouput generator 2 Menjaga kesetabilan aliran daya reaktif 3 Menjaga stabilitas fackor daya 4 Menjaga kesetabilan sudut rotor 5 Membatasi generator sedemikian hingga tetap beroperasi pada daerah aman. Cara Kerja Sistem Eksitasi PLTMH Curug PLTMH Curug memiliki sistem eksitasi tanpa sikat brashless sehingga dalam menginjeksikan arus DC menuju main exciter dihasilkan dari generaror AC utama yang telah disearahkan oleh rotating dioda sehingga dapat menginjeksikan arus DC menuju main exciter. Besarnya arus DC yang di injeksikan menuju main exciter dapat diatur dengan mengatur gate thyristor baik diatur secara manual melalui potensio ataupun secara kontrol dengan ABB UNITROL 1020. Untuk mengatur besarnya arus eksitasi yang di injeksikan ke main exciter diatur oleh ABB UNITROL 1020. ABB UNITROL 1020 akan mengontrol jalannya proses eksitasi ketika menginjeksikan arus DC dari order pertama yaitu field flashing dengan sumber utama battery 125 VDC ketika generator belum mampu menghasilkan tegangan. Dengan adanya arus ini, maka generator akan menghasilkan tegangan keluaran. Proses ini akan di kntrol oleh ABB UNITROL 1020 dengan menutup kontaktor dan merubah sumber tegangan dan arus eksitasi ke generator utama ketika pada saat tegangan keluaran generator telah mencapai 20% dari tegangan nominalnya sebesar 6,6 kV dan pada saat bersamaan thyristor mulai beroperasi dan menaikan tegangan hingga nilai nominalnya. Keluaran tegangan AC tiga fasa generator yang sebesar 6,6 kV diturunkan terlebih dahulu oleh trafo eksitasi menjadi 400 V yang kemudian disearahkan oleh thyristor rectifier menjadi tegangan DC. Untuk mengontrol besarnya arus eksitasi yang di injeksikan pada rotor generator dilakukan oleh Automatic Voltage Regulator AVR ABB UNITROL 1020 dengan cara mengatur besarnya tegangan atau arus yang di injeksikan pada terminal gate thyristor rectifier. Ketika kaki gate diberi tegangan positif, maka thyrstor akan menghantar-kan arus listrik dari anoda ke katoda dari thyristor tersebut, sehingga arus eksitasi akan di teruskan menuju main exciter yang selanjutnya arus yang keluar dari generator main exciter akan diteruskan dan disearahkan oleh rotation diode menuju ke rotor generator utama. AVR bekerja bergantung kepada pembebanan terhadap generator itu senndiri. Keluaran dari AVR atau ABB UNITROL ini berupa tegangan analog sehingga harus dikonversikan terlebih dahulu menjadi tegangan PWM pulse width modulation oleh pulse generator lalu dikuatkan oleh PAM Pulse Amplifier Module sehingga dapat mengatur switching thyristor. ABB UNITROL ini diatur dalam mode VAR karena kapasitas generator yang kecil dan terhubung dengan sistem/grid yang jauh dan akan selalu mengikuti teganangan jaringan karena patokannya ialah VAR. Pengaturan Sistem Eksitasi Dalam Kondisi Berbeban Saat generator sinkron bekerja pada beban nol tidak ada arus yang mengalir melalui kumparan jangkar stator, sehingga yang ada pada celah udara hanya fluksi arus medan ro-tor. Namun jika generator sinkron diberi beban, arus jangkar Ia akan mengalir dan memben-tuk fluksi jangkar. Fluksi jangkar ini kemudian mempengaruhi fluksi arus medan dan akhirnya menyebabkan berubahnya harga tegangan terminal generator sinkron. Reaksi ini kemudian dikenal sebagai reaksi jangkar. Pengaruh yang ditimbulkan oleh fluksi jangkar dapat berupa distorsi, penguatan magnetising, maupun pelemahan demagnetising fluksi arus medan pada celah udara. Perbedaan pengaruh yang ditimbulkan fluksi jangkar tergantung kepada beban dan faktor daya beban. Analisa Data Operasi Harian PLTMH Curug Unit 2 Sebagaimana yang terdapat pada bab sebelumnya dimana saya memfokuskan pada pengaruh pembebanan tehadap terhadap tegangan output generator PLTMH Curug Unit 2. Dimana untuk melihat hal tersebut dibutuhkan data operasi harian dari PLTMH Curug Unit 2. Berikut data operasi harian PLTMH Curug Unit 2 tanggal 03 Februari 2020. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 402 Tabel 1. Data Operasi Harian Sumber Miftah Farhan, 2020 Dari data tabel 1 dapat terlihat bahwa arus eksitasi dan tegangan output generator tidak ter-lihat berubah signifikan ini disebabkan karena beban sendiri sudah ditetapkan tidak menekan atau menyesuaikan kebutuhan beban diliar/ jaringan dan pengaturan bebaban sendiri diatur secara manual. Pengaruh Pembebanan Daya Aktf P tehadap Tegangan Output Generator Dari data tabel 1 dapat diketahui bahwa dengan terjadinya perubahan beban, tegangan output generator juga akan ikut berubah. Ketika beban naik, maka yang terjadi adalah membuat tegangan output generator juga menjadi turun sehingga memaksa generator un-tuk menaikkan tegangan output generator agar tetap dalam kondisi nominalnya. Tegangan output generator ini dapat dijaga pada kondisi nominalnya dengan cara menambah besarnya arus eksitasi yang diinjeksikan ke rotor pada saat terjadi penurunan beban tegangan output generator juga akan naik melebihi tegangan nominalnya. Sumber Miftah Farhan, 2020 Gambar 2. Grafik Pembebanan Terhadap Teganan Output Generator Untuk menjaga agar tegangan output tetap pada kondisi nominalnya maka besarnya arus eksitasi yang diinjeksikan pada rotor generator harus diku-rangi. Hal ini dibuktikan pada grafik tegangan keluar generator terhadap arus eksitasi dan pengaruh pembebanan terhadap tegangan keluar. Grafik dapat dilihat pada gambar 2. Pengaruh Pembebanan Daya Aktif P Terhadap Arus Eksitasi Pada dasarnya tegangan output dan arus eksitasi memiliki hubungan yang saling berkaitan terhadap pembebanan. Seperti yang telah dijelaskan sebelumnya, ketika pem-bebanan naik, maka tegangan jaringan dan tegangan output generator akan turun. Sumber Miftah Farhan, 2020 Gambar 3. Pengaruh Pembebanan Daya Aktif P Terhadap Arus Eksitasi Oleh karenanya dibutuhkan penambahan arus eksitasi untuk menjaga tegangan output gen-erator tetap pada kondisi nominalnya. Berikut ini grafik pengaruh pembebanan terhadap arus eksitasi. Grafik dilihat pada gambar 3. Pengaruh Pembebanan Daya Reaktif Q Terhadap Arus Eksitasi Seperti telah di bahas sebelumnya Pembebanan daya reaktif mampu menyebabkan reaksi jangkar yang dapat mempengaruhi arus medan. Dimana di dalam dapat terlihat bahwa arus eksitasi yang di injeksikan pada rotor generator di gunakan untuk mengatur besar daya reaktif Q. daya reaktif tersebut di atur untuk menjaga tegangan generator agar tetap pada tegangan nominalnya, ini membuktikan bahwa arus eksitasi berguna untuk mengatur daya reaktif yang diinginkan dan menjaga tegangan generator agar da-lam batas nominalnya. Grafik dapat dilihat pada gambar 4. Sumber Miftah Farhan, 2020 Gambar Pembebanan Daya Reaktif Q Terhadap Arus Eksitasi 5. PENUTUP Kesimpulan Dari pembahasan yang telah dilakukan, dapat disimpulkan beberapa hal, yaitu 1 Jenis sistem eksitasi pada generator PLTMH Curug adalah sistem eksitasi tanpa menggunakan sikat brashless. JURNAL SIMETRIK VOL 11, NO. 1, JUNI 2021 p-ISSN 2302-9579/e-ISSN 2581-2866 403 2 Pembebanan pada generator PLTMH Curug diatur secara manual menggunakan po-tensiometer dan diatur mengikuti kebutuhan beban di jaringan sehingga perubahan beban pada generator PLTMH Curug tidak terlalu signifikan dan tidak terpengaruh beban di jaringan/grid. 3 Ketika beban naik maka tegangan output generator akan turun maka dibutuhkan in-jeksi penambahan arus eksitasi 4 semakin besar pembebana maka, maka arus eksitasi yang diinjeksikan akan semakin besar. Saran Pada saat penelitian sebaiknya lebih banyak bertanya ketika ada data yang keliru dan kurang jelas, dikarnakan data masih ditulis tangan atau manual kadang tidak terbaca. DAFTAR PUSTAKA Sebayang, F. R., & Hasibuan, A. R., 2013. Analisis Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3 Fasa Menggunakan Metode Pottier. vol, 3, 6. Hardiansyah, R., 2016. Sistem Pengendalian Eksitasi Dengan Abb Unitrol 1020 Pada Generator Di Plta Ir. H. Djuanda Jatiluhur. Bandung Politeknik Negeri Bandung Ilham., 2017. Karakteristik Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama Rompas, P. T., 2011. Analisis pembangkit listrik tenaga mikrohidro pltmh pada daerah aliran sungai ongkak mongondow di desa muntoi kabupaten bolaang mongondow. Jurnal Penelitian Saintek, 162, 160-171. Ridzki, I., 2017. Analisis Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif Generator. JURNAL ELTEK, 112, 31-41. Azis, H., Pawenary, P., & Sitorus, M. T. B., 2019. Simulasi Pemodelan Sistem Eksitasi Statis pada Generator Sinkron terhadap Perubahan Beban. Energi & Kelistrikan, 112, 46-54. ... Dikatakan generator sinkron karena kecepatan putaran rotornya sama dengan kecepatan putaran medan magnet pada stator. Kumparan medan generator sinkron terletak di bagian rotor, sedangkan kumparan jangkar berada di stator [7]. Induksi elektromagnetik yang terjadi adalah aplikasi dari Hukum Faraday yang menyatakan "Jika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul GGL" [7], [8]. ...... Kumparan medan generator sinkron terletak di bagian rotor, sedangkan kumparan jangkar berada di stator [7]. Induksi elektromagnetik yang terjadi adalah aplikasi dari Hukum Faraday yang menyatakan "Jika sebuah penghantar memotong garis-garis gaya dari sebuah medan magnetik flux yang konstan, maka pada penghantar tersebut akan timbul GGL" [7], [8]. Generator yang merupakan mesin listrik berputar juga perlu dilakukan pemeliharaan. ...Luki Septya MahendraAfnan Arif SuryantoBagiyo HerwonoJauharotul MaknunahPembangkit Listrik Tenaga Uap PLTU Suge Unit 2 Kabupaten Belitung pada tanggal 21 Juli 2020 mengalami gangguan pada generator yang berakibat tidak dapat beroperasi. Akibatnya berdampak pada defisit pasokan listrik pada daerah Kepulauan Bangka Belitung. Sehingga pada penelitian ini dilakukan inspeksi ke lapangan dan pengukuran tahanan isolasi rotor dan tahanan belitan rotor untuk analisa gangguan. Dari hasil inspeksi terdapat pengaman ground fault yang trip dan dari hasil pengukuran nilai isolasi dan tahanan belitan rotor adalah dibawah standar IEEE sehingga dapat dianalisa terjadi short cicuit ke tanah. Short circuit mengakibatkan kerusakan pada leadbus rotor. Sehingga perlu dilakukan pemulihan gangguan berupa penyambungan dengan menggunakan metode brazing. Metode ini yaitu dengan menyambungkan leadbus dengan cara Torch Heating. Cara ini dipilih karena yang paling umum untuk keperluan penyambungan bahan metal dan sesuai dengan kondisi PLTU. Setelah dilakukan penyambungan diukur kembali tahanan isolasi rotor dan tahanan belitan rotor. Dari hasil pengukuran pasca pemulihan sudah sesuai dengan standar IEEE. Secara garis besar kondisi rotor generator masih bisa dioperasikan namun perlu dilakukan perawatan rotor generator secara menyeluruh dalam waktu dekat.... Generator sinkron merupakan salah satu komponen utama dalam proses pembangkitan tenaga listrik. Untuk membangkitkan daya listrik diperlukan sistem yang digunakan sebagai penguat agar dapat menghasilkan medan magnet atau lebih sering disebut sistem eksitasi [5][6] [7]. Gaya gerak listrik GGL adalah beda potensial yang berada diantara ujung-ujung suatu penghantar dalam sebuah rangkaian terbuka [8]. ...Setya Aria PutraDian Budhi SantosoGenerator sinkron membutuhkan suatu medan magnet sebagai penguat agar dapat menghasilkan tegangan listrik. Medan magnet tersebut dapat diperoleh dari arus eksitasi yang dibangkitkan oleh exciter. Arus eksitasi tersebut mengalir pada kumparan medan yang terdapat pada rotor, sehingga rotor itu dapat menghasilkan medan magnet. Kemudian, konduktor akan memotong garis-garis gaya magnet dan menghasilkan Gaya Gerak Listrik GGL sehingga menghasilkan tegangan [1]. Saat arus eksitasi diatur di bawah nilai nominal, maka fluks magnet yang terdapat pada stator akan menurun, sehingga tegangan yang dihasilkan oleh generator juga ikut turun. Perubahan pada eksitasi menjadi penyabab tegangan dan daya reaktif yang dihasilkan generator mempunyai nilai batas tertinggi dan batas terendah. Perubahan besarnya arus eksitasi juga mempengaruhi variasi nilai beban pada besarnya daya reaktif. Pengaturan input pada generator sinkron adalah pengaturan yang dilakukan input arus medan dan frekuensi, input arus medan digunakan untuk mengatur besarnya nilai keluaran daya reaktif dan tegangan yang dihasilkan oleh generator. Berdasarkan data akhir dari hasil perhitungan daya reaktif dapat dilihat bahwa nilai faktor daya yang diperoleh minimum sebesar 0,94 dengan arus eksitasi pada rotor sebesar 314 A dan daya reaktif sebesar 3,1 MVAR, sehingga dapat simpulkan bahwa besar nilai daya reaktif yang dihasilkan oleh generator berbanding lurus dengan arus eksitasi yang Rizal MaulanaAgus SuandiHelmizarThe generator in the hydropower system is used to convert mechanical energy originating from the turbine rotation into electrical energy by producing an electromotive force. Excitation is one of the most crucial parts of the Generator system, where excitation plays a role in forming/producing electromagnetic flux, resulting in an induced emf. The amplifying current is used to adjust the magnitude of the output voltage according to the applied load. The tool used to regulate the excitation current is the Automatic Voltage Regulator AVR. The differential loading on the generator changes every time. Therefore a power plant must be able to generate electricity in accordance with the magnitude of the changing load. In power generation, these loading fluctuations can be overcome by adjusting the water valve opening and the excitation current flowing to the electromagnet coil on the generator rotor with constant rotor rotation by the AVR so that electric power is generated according to the applied load. The purpose of this study is to analyze the effect of the load on the excitation current. The results obtained are the load has an effect on the excitation AzisPawenary PawenaryMeyhart Torsna Bangkit SitorusExcitation system is one of the most important parts of synchronous generators, where the system functions to provide dc power to the field generator coil. Iin this study, a static excitation system consisting of transformers and connected thyristors in bridge configuration has been implemented in synchronous machines that operate as 206,1 mva capacity generators, 16,5 kv using the help of matlab simulink r2017b software. By adjusting the load given to the generator, variations in excitation currents can affect the amount of output voltage generated by the generator so that it can increase and decrease the induced voltage. In full load conditions, namely p = 175 mw, q = 100 mvar, the results of the study show that when the simulation is run at alpha 0 °, it is known that the average value of dc voltage is 496,4 v, excitation current is 1057 a and voltage generator output has increased beyond its nominal voltage of 16,72 kv. in this case, to maintain the terminal voltage, the excitation current must be reduced by increasing the angle of shooting of the thyristor to an alpha angle of 45 °, so that the average dc voltage can be reduced to 479,3 v, as well as the excitation current to 985,9 a. the generator output voltage at the alpha 45 ° angle is obtained according to its nominal value of 1,.5 Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3F R SebayangA R HasibuanSebayang, F. R., & Hasibuan, A. R., 2013. Analisis Perbaikan Faktor Daya Beban Resistif, Induktif, Kapasitif Generator Sinkron 3 Fasa Menggunakan Metode Pottier. vol, 3, Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama RompasR HardiansyahHardiansyah, R., 2016. Sistem Pengendalian Eksitasi Dengan Abb Unitrol 1020 Pada Generator Di Plta Ir. H. Djuanda Jatiluhur. Bandung Politeknik Negeri Bandung Ilham., 2017. Karakteristik Perubahan Pembebanan Puncak Grid System 500 Kv Terhadap Arus Eksitasi Generator Unit 3 Plta Cirata. Purwakarta Politeknik Enjnering Indorama Rompas, P. T., 2011. Analisis pembangkit listrik tenaga mikrohidro pltmh pada daerah aliran sungai ongkak mongondow di desa muntoi kabupaten bolaang mongondow. Jurnal Penelitian Saintek, 162, Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif GeneratorI RidzkiRidzki, I., 2017. Analisis Pengaruh Perubahan Eksitasi Terhadap Daya Reaktif Generator. JURNAL ELTEK, 112, 31-41.
Nj7Z. 75yywkd9hh.pages.dev/42075yywkd9hh.pages.dev/3675yywkd9hh.pages.dev/18775yywkd9hh.pages.dev/43275yywkd9hh.pages.dev/44175yywkd9hh.pages.dev/38975yywkd9hh.pages.dev/55775yywkd9hh.pages.dev/562
tegangan turun saat diberi beban